几乎在10年之后,Tsutomu Miyasaka朝着解决问题的方向迈出了第一步。日本桐荫横滨大学化学家Miyasaka及同事致力于研究染色敏化太阳能电池(DSSCs)。与传统的硅太阳能电池不同,DSSCs包含有机吸光染料混合物,这些混合物为二氧化钛(TiO2)等微小颗粒添加涂层,这些颗粒被电解液包围。
在标准DSSCs里,当染色分子吸引光子时,光能够提高染色剂中电子的能量,使其跳到二氧化钛微粒上。在那里,它会从微粒跳到微粒,直至到达电极,然后被收集起来,送入电路中。同时,其他电子从电解质跳到染色剂,并使其恢复到初始状态。
Gratzel表示,这里就有个麻烦。1991年Gratzel研究小组发明了DSSCs,但其染色剂不能吸收所有的光,因此降低了电池的能效。为了做得更好,Miyasaka将注意力转向钙钛矿。他的研究小组花费了两年时间,寻找能使这种物质变稳定的秘方。他们使用了一层薄薄的吸光钙钛矿层,能效达3.8%。但不幸的是,这种电池也包含液体电解质,会在几分钟内溶解钙钛矿,以致电池失效。
之后,Gratzel与韩国成均馆大学的Nam-Gyu Park合作迈出了下一步。2012年,他们宣布使用固体取代了原来的液体,能效接近10%。现在,事情开始变得有趣。
越来越好
当其他技术还在为突破12%竞争时,钙钛矿太阳能电池为何能遥遥领先?Cahen表示,正确答案的一部分是,钙钛矿有近乎完美的结晶度。这是砷化镓和晶体硅等顶级太阳能电池材料共有的特征。
在第二类电池材料中,这种晶体排列充斥着许多瑕疵。当电荷快速通过晶体陷入瑕疵时,它们通常会放弃额外的能量。制造无瑕疵的晶体通常需要超高的温度,或价值数百万美元的设备。但是钙钛矿能在80摄氏度下被制成,并能从溶液中简单沉淀析出近乎完美的形式。“有一点美梦成真的感觉。”Cahen说。
今年10月,英国牛津大学Henry Snaith研究小组和Gratzel小组等宣布,他们获得了更完美的结果:钙钛矿能允许电荷在材料里穿行很长的距离。这种被称为载流子扩散长度的性能对所有太阳能电池都非常重要。它用于衡量一个电子在遇到带正电荷的电子空位或坑洞并掉入之前能走多远。在这个过程中,电子会放弃从阳光的光子获得的多余能量,产生热能而非电力。