本文主要概述了单晶硅炉热场材料的发展概况,以及石墨热场材料与C/C热场材料的性能比较。并指出,随着产量的提高和生产设备的大型化,C/C复合热场材料将是今后光伏热场材料的重点发展方向。
3.3石墨热场材料的纯化与致密化
我国是硅材料的生产大国,但不是强国。这也就是说,我国可规模化生产粗硅(99.9%),但生产精硅(99.99999%)的技术滞后,产量低。硅材料产业现状是卖出粗硅,买回精硅,生产出光伏产品后再销往国外。因为生产精硅,需用高纯度的石墨坩埚,其金属杂质含量要<2×10
-5,这就需用干燥的氯化氢来进行纯化处理。图5是制造无水氯化氢的整套工艺流程图。纯化是基于在高温下金属杂质与氯化氢生成低沸点氯化物而挥发逸走,使石墨化得到纯化。此外,也可采用氯气纯化。
普通石墨中金属杂质含量在>1×10
-4,高纯石墨仅-6以下,超高纯则更低。如果B含量较高,可用氟化处理纯化。例如采用二氯二氟甲烷(CCl2F2)纯化。这些高纯石墨制品除用于光伏产业的热场材料外,还可用于半导体工业、核能装置等方面。纯化工艺复杂,但高纯制品价格比普通制品高数十倍到近百倍。
石墨的理论密度为2.266g/cm
3,C/C复合材料密度为1.5~1.6g/cm
3,两者的密度之差为孔隙率。在控制单晶硅的熔融工作室内,有SiO气体产生,SiO进入到孔内与碳反应消耗碳;同时,硅与碳反应产生SiC也消耗碳,其反应可能如下:
SiO + C→Si + CO↑
Si + C→SiC
因此,C/C坩埚表面要进行热解碳沉积而填堵孔。图6是热解碳填堵孔及表面沉积热解碳的C/C复合材料坩埚的示意图。化学气相沉积热解碳的速度要慢,控制在0.2μm/h,沉积厚度为2μm热解碳约需100h。
C/C坩埚除用CVD法沉积热解碳外,也可用沉积SiC层。SiC层不仅可填堵表面的孔,而且可缓和它们之间的热膨胀率之差而引起应力导致热龟裂。硅在液相的密度要比固相大,熔融或冷却过程中自身要发生热胀冷缩,而碳的膨胀系数要比硅小得多,使在升温或降低过程中缓解热应力。因为SiC的线膨胀随温度变化规律与石墨材料相一致,如图7所示。
作者:许鹏 戴开瑛 张治军 来源:《太阳能发电》杂志
责任编辑:wutongyufg