核聚变之所以难,完全是因为它要求的条件很是苛刻,太阳可以轻易地发生聚变是因为其核心温度高达1500万摄氏度而且有很高的密度,氢弹则是依赖核心装载的原子弹提供聚变点火的能量。所以我们在地球上种太阳,也就是实现可以被我们控制的核聚变(氢弹不可控),经过计算,需要创造一个类似于太阳的环境,一个需要使原料达到1亿摄氏度的环境。比太阳最高的温度还要高10倍!而且当氢元素被加热到这么高的温度时,他的状态就会由气态变成等离子体态,这种状态类似于气体,但是内部带电。我们要建造的“人造太阳”就好比一个烧煤的炉膛,首先需要有耐高温的炉子可以装燃烧的煤,然后需要达到煤的燃烧温度否则烧不起来,最终需要的是要保证煤可以一直保持燃烧的温度,否则烧一会就自己熄灭了。所以问题就是,我们用什么来装这些1亿度的等离子体,我们能不能很好的理解等离子体的行为保证它可以稳定的燃烧,毕竟这种状态科学家此前并没有研究太多。这可真的是一个全新的领域,路真的很难走,科学家们也一直在努力提出新的想法新的思路,很多不同种类的聚变装置也建立了起来。为了给大家以信心,接下来就介绍一下60年来聚变界的进步与成果。
图4 气态转化为等离子体态
首先是我们用什么来“盛装”这些等离子体,近一亿度的温度任何材料都承受不了,但因为等离子体有个特点就是带电,既然带电,科学家们就想到可不可以用一个磁场去装,然后“磁约束”聚变的概念就出炉了,也就是用很强的磁场做成笼子,让这些高温燃料远离我们的“炉壁”。围绕着“磁约束”聚变装置的设计概念有很多,限于篇幅,今天只重点介绍在国际主流的装置——托卡马克上实现的突破。
图5 “磁笼”盛装等离子体
突破一:从20世纪70年代开始,国际上开始进行托卡马克装置的研究工作,经过不断地努力,终于在20年后,欧洲的聚变装置JET第一次实现了聚变功率16MW,同时输出功率超过输入功率的历史性突破,这无异于给所有研究聚变的科学家一颗定心丸,因为终于从实验上证实托卡马克实现可控聚变是有科学可行性的。但不幸的是,这个过程只持续了几秒钟,也就是说,不能长时间放电,还是不能商用。为什么呢?就是因为我刚才提到的,我需要制作一个“磁笼”装聚变燃料,可是这些磁场是要用外部很大的导线电流产生,导线有电阻,就会产生热量(电热炉的原理),所以导线承受不了长时间的运行,不然就会烧坏。那怎么办?
突破二:既然是因为导线的原因使聚变不能一直进行,那我可以把电阻降低直至为零啊,所以,超导托卡马克的概念就诞生了,我把产生磁场的线圈变成超导体,这不就不会产生很大热量了嘛。于是2006年,世界上第一台全超导托卡马克EAST(Experimental Advanced Superconducting Tokamak)在中国合肥美丽的科学岛上出生了。从这时开始,聚变界喜讯连连。2006年,EAST首次运行就获得了411秒2000万度的等离子体放电,是连续运行最长时间的世界纪录。2017年,EAST实现了稳定的101.2s高约束等离子体运行,等离子体温度达到了500多万度,而且相比于2006年可以更稳定地约束更多等离子体。而今年,等离子体终于可以达到1亿度了。这个消息最大的意义就在于,我们有了可以长时间让聚变燃料在“磁笼”中保持1亿度并且放电的可行性了。
图6 EAST装置
“炉子”有了,温度也能达到了,接下来只要能够让聚变燃料可以更加持久的燃烧,那么聚变发电的一天就真正到了,我觉得离这一天不会太短也不会太长。重点是要保持一颗平常心,聚变是一个大工程,罗马城也不是一天两天建成的嘛。聚变领域最为人熟知的可能就是50年定律了,就是说离聚变发电永远还有50年,可大家应该可以看到,每隔大约20年甚至10年,聚变领域就会有一个大的突破,随着人类技术水平的提高,这个周期只会越来越短。不要太悲观,因为我们一直在进步;不要太过乐观,因为我们问题还有很多,许多相关的技术比如超导、材料、物理等都还不够成熟。
图7 聚变人类梦寐以求的能源
总结一下,中国聚变实现一亿度是个巨大的进步,这表明世界离聚变发电更近了,但我们现在研究的都只是核聚变实验装置,只涉及到物理机制的研究和工程技术的储备,都没有涉及聚变反应后发生的能量输出环节,而我们目标是要建造商用聚变电站,这个跨越可能面临更多我们没见过的问题。此外,建造一个实验装置动辄就需要几亿上十亿美元,耗资仍然巨大。对一些高精尖技术比如大型超导磁体、大体积超高真空、等离子体控制工程等等的要求会越来越高。无论如何,有信心,多给聚变一点时间,它一定会给人类带来一个水清天蓝、宁静祥和的新世界,而且更应该相信第一盏“人造太阳”之火点亮的灯会在中国亮起。
【文/观察者网专栏作者 徐宇晨】