关注|国际能源科技发展动态研判与战略启示

2019-05-02 19:13:56 太阳能发电网
能源是人类生存和文明发展的重要物质基础,攸关国计民生和国家战略竞争力。当前经济全球化面临新形势,新一轮科技革命和产业变革方兴未艾,国际分工体系加速演变,全球产业价值链深度重构。全球能源生产消费革命蓬勃兴起,能源科技创新在其中发挥核心引领作用,而从系统层面开展多学科交叉的全价值链创新已成为能源顶层战略规划和科研

2 能源科技创新前沿突破不断涌现


随着能源技术和一系列新兴技术(如纳米、生物、新材料、人工智能等)的发展和深度融合,能源生产、转化、运输、存储、消费全产业链正发生深刻变革。从传统集中式到分布式能源,从智能电网到能源互联网,从石化智能工厂到煤炭大数据平台,从用户侧智慧用能到汽车充电设施互联互通,一些重大或颠覆性技术创新在不断创造新产业和新业态,改变着传统能源格局。


能源生产端诸如可再生能源、先进安全核能、化石能源清洁高效利用等先进技术正在改变传统能源开发利用方式,并稳步推进主体能源的清洁低碳更替。能源消费端致力于研发低能耗、高效能的绿色工艺与装备产品,工业生产向更绿色、更轻便、更高效方向发展,交通动力能源向智能化、电气化方向转变,建筑行业用能将实现洁净化、绿色化、智能化。而分布式智慧供能系统、能源互联网发展应用正在引发能源系统整体变革,智慧能源新业态初现雏形。


2.1 能源转型迈向数字化智能创新时代


人工智能、大数据、物联网等数字技术为能源行业重大挑战提供全新的数字化解决方案,数字化创新集中在数字技术和数据的智能使用上。


国际能源署2017年底发布首份《数字化与能源》 报告指出,能源数字化转型的最大潜力是其能够破除能源各部门之间的壁垒,推动全球能源系统向互联、智能、高效、可靠和可持续方向发展。英国石油公司《技术展望报告2018》 指出,随着数字技术(包括传感器、超级计算、数据分析、自动化、人工智能等)依托云网络应用,到2050年一次能源需求和成本将降低20%—30%。大数据和机器学习算法的普及,也推动着科研工作开始采用以人工智能和数据挖掘为基础的新兴研究手段,从而提升研究效率。美国斯坦福大学基于人工智能技术,利用现有的锂离子电池文献中的所有实验数据,构建了具备深度学习能力的计算机预测模型,仅耗时数分钟,即从材料数据库的1万多种候选材料中筛选出了20余种有潜力的固态电解质材料,其筛选效率是传统随机测试的百万倍。美国能源部还资助了机器学习在地热领域应用的研究项目,聚焦机器学习用于地热资源勘查和开发先进数据分析工具。日本新能源产业技术综合开发机构也部署了相关研究课题,利用物联网、人工智能等技术改善地热发电站的管理运营效率。


2.2 油气领域数字化智能化竞争激烈


化石能源行业正在从传统重资产行业转型为技术密集型、技术精细型产业,各竞争主体对数字化技术的应用速度与水平将会决定未来的行业座次和竞争版图,智能精细化勘采技术的进步将支撑开发深水深层和非常规油气资源。


2017年世界经济论坛发布的《数字化转型倡议——石油和天然气行业》 报告指出,大数据和分析工具、工业物联网和移动技术正成为油气企业首要的数字化主题,而机器人和无人机、可穿戴技术、人工智能将成为未来3—5年增长最快的领域。全球多家油气企业相继推出数字化创新举措:壳牌集团宣布在石油行业大规模推进人工智能应用计划,俄罗斯天然气公司实施2030年数字化转型战略,巴西国家石油公司成立数字化转型部门,中石油发布国内油气行业首个智能云平台等。

此外,IT企业也在加强跨界和传统油气企业开展合作:华为公司的油藏模拟、油气物联网等解决方案已服务70%的全球TOP20油气企业;IBM公司牵手阿布扎比国家石油公司,首次将区块链技术应用于油气生产核算;通用电气公司和来宝集团联合推出世界第一艘数字钻井船;谷歌公司和道达尔公司将联合攻坚人工智能在油气勘探领域的应用。


2.3 化石能源清洁高效梯级利用


先进高效率低排放燃烧发电和深加工分级转化是煤炭和天然气清洁高效利用的未来发展方向,碳基能源高效催化转化、新型富氧燃烧、先进联合循环等高效低排放技术正处于研发阶段。


美国碳利用研究理事会(CURC)和电力科学研究院(EPRI)在2018年7月更新的《先进化石能源技术路线图》 中,规划了增压富氧燃烧、化学链燃烧、超临界CO2动力循环发电、先进超超临界(A-USC)、煤气化联合循环等高效低碳发电技术到2035年的研发与大规模示范路径。美国、日本等发达国家已将超临界CO2动力循环发电系统作为革命性前沿技术进行积极研究,目前在实验室已建成了小功率的试验机组,正在向工业示范电站迈进。增材制造(3D打印)技术在燃气轮机制造中的应用已从原型试制逐渐走向实际生产,如通用电气公司、西门子公司等燃机制造巨头稳步推进制造工艺转型升级。


经过多年发展,中国的先进煤化工合成技术取得了重大突破,已掌握了世界领先的百万吨级煤直接液化和煤间接液化技术。中国科学院大连化学物理研究所成功实现了具有自主知识产权的百万吨级煤制烯烃和煤制乙醇技术商业化应用,对保障我国能源安全等具有重要的战略意义。该所还在煤气化直接制烯烃研究上取得重大进展,颠覆了90多年来煤化工领域一直沿袭的费-托路线,从原理上开创了一条低耗水进行煤转化的新途径,这是煤转化领域里程碑式的重大突破。


2.4 发展下一代安全高效先进核能系统


可持续性、安全性、经济性和防核扩散能力的先进核能技术是核能发展的重中之重,主要研究方向集中在开发固有安全特性的第四代反应堆系统、燃料循环利用及废料嬗变堆技术以及更长远的核聚变示范堆设计与实现。


第四代核能系统国际论坛(GIF)在2014年初更新了技术路线图,规划了未来10年第四代堆型的研发目标和里程碑。美国能源部于2017年底宣布,未来5年将资助4亿美元,重点开展新型反应堆示范工程、核电技术监管认证、先进反应堆设计开发等工作,以加速核能技术创新突破。中国科学院在未来先进核裂变能——加速器驱动次临界系统(ADS)研究中取得重大成果,并基于此在国际上首次提出“加速器驱动先进核能系统(ADANES)”概念,将在广东惠州建设国际首台ADS嬗变研究装置。


可控核聚变技术目前在等离子体理论研究、材料开发和运行试验方面不断涌现新的成果。中国科学院合肥等离子体物理研究所研制的全超导托卡马克核聚变实验装置,相继取得等离子体中心电子温度达到1亿摄氏度、百秒量级稳态运行等多项世界级重大突破。德国马普学会等离子体物理研究所建造的世界最大仿星器聚变装置W7-X成功产出首个氢等离子体,计划到2020年实现持续30分钟的等离子体。美国国家科学院2018年发布《美国燃烧等离子体研究战略计划最终报告》 ,建议美国继续参与国际热核聚变实验堆(ITER)计划,并启动国家研究计划迈向紧凑型聚变发电中试阶段。欧盟于2014年在“地平线2020”框架下投入8.5亿欧元,启动了“聚变联合研究计划” 。


2.5 新能源与可再生能源加快应用


(1)风能、太阳能、生物燃料等可再生能源技术研发活跃,有望在未来20年成为主导电力来源或规模替代石油基燃料。①在风能领域,美国和欧盟均提出了海上风电发展战略,加速推动海上风能产业的发展。目前8 MW风力涡轮机已投入商业应用,10 MW及以上的超大规模风力涡轮机正在研发中,浮动式海上风电场的投入使用推动风电向深海迈进。②在太阳能领域,美国、欧盟、日本等主要国家和地区深化布局光伏发电全产业链创新,作为推进新兴产业发展的主要战略举措,通过全覆盖布局先进材料、制造和系统应用各环节研发实现平价上网目标。钙钛矿太阳电池器件结构日趋完善,效率已超多晶硅,逼近单晶硅,但实现商业化仍需攻克规模化制造工艺、稳定性等关键挑战。中国科学院半导体研究所在2018年创造了单结钙钛矿太阳电池转换效率世界纪录(23.7%)。③在生物能源领域,纤维素乙醇、藻类生物燃料等技术领域取得了重要进展,特别是美国和欧洲首座商业规模纤维素酶解制乙醇工厂投产,为先进低成本生物液体燃料更大规模发展创造了条件。目前研究重点主要集中在高产率能源作物培育改造,微生物酶解催化剂,热化学转化工艺与多功能催化剂,工程微藻选育、培养、油脂提取与转化等。


(2)氢能发展备受重视,形成新一轮的发展热点。日本、欧盟和澳大利亚等国家和地区相继公布了氢能发展战略和技术路线图,提出未来20— 30年的氢能与燃料电池技术和产业发展目标。研究人员致力于解决低成本高效率规模化制氢、经济高效氢储存和输配、燃料电池基础关键部件制备和电堆集成、燃料电池发电及车用动力系统集成等重大科技问题。德国亥姆霍兹柏林能源材料中心设计开发了双光阳极串联光电催化系统,创造了太阳能到氢能19%的转化效率纪录。日本国立产业技术综合研究所开发了陶瓷电解质低温致密烧结工艺,制备出全球首个商用规格的质子陶瓷燃料电池。


2.6 新型高能规模化储能取得突破


动力和电力规模储能技术是未来能源系统必不可少的关键组成部分,也是各国竞相布局的重点领域。欧盟组建“欧洲电池联盟”实施战略行动计划,在欧洲打造具有全球竞争力的电池产业链。美国能源部将在未来5年为储能联合研究中心继续投入1.2亿美元,设计开发新型高能多价化学电池,并研究用于电网规模储能的液流电池新概念。日本新能源产业技术综合开发机构在未来5年资助100亿日元,攻克全固态电池商业化应用的技术瓶颈,旨在2030年左右实现规模化量产。


科学家在储能反应机理探索、电化学体系设计、新材料开发方面成果斐然,研究重点在于开发高安全性、长寿命、低成本的锂离子电池及新型高能化学电源体系,并开展新型物理储能系统规模化示范。美国伊利诺伊大学芝加哥分校等机构合作开发新型锂-空气电池,创造在自然空气环境中稳定运行超700次的循环寿命纪录。美国哈佛大学研发出基于低成本醌类有机电解液的新型液流电池,创造工作寿命最长纪录,而且较全钒液流电池成本大幅下降。中国科学院工程热物理研究所建成了国际首套10 MW级先进压缩空气储能示范系统,示范系统在额定工况下的效率超过60%。


 



作者: 来源:先进能源科技战略情报研究中心 责任编辑:jianping

太阳能发电网|www.solarpwr.cn 版权所有